Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant J ; 110(5): 1271-1285, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289007

RESUMO

Cellulose is the main structural component in the plant cell walls. We show that two glycosyltransferase family 31 (GT31) enzymes of Arabidopsis thaliana, here named cellulose synthesis associated glycosyltransferases 1 and 2 (CAGE1 and 2), influence both primary and secondary cell wall cellulose biosynthesis. cage1cage2 mutants show primary cell wall defects manifesting as impaired growth and cell expansion in seedlings and etiolated hypocotyls, along with secondary cell wall defects, apparent as collapsed xylem vessels and reduced xylem wall thickness in the inflorescence stem. Single and double cage mutants also show increased sensitivity to the cellulose biosynthesis inhibitor isoxaben. The cage1cage2 phenotypes were associated with an approximately 30% reduction in cellulose content, an approximately 50% reduction in secondary cell wall CELLULOSE SYNTHASE (CESA) protein levels in stems and reduced cellulose biosynthesis rate in seedlings. CESA transcript levels were not significantly altered in cage1cage2 mutants, suggesting that the reduction in CESA levels was caused by a post-transcriptional mechanism. Both CAGE1 and 2 localize to the Golgi apparatus and are predicted to synthesize ß-1,3-galactans on arabinogalactan proteins. In line with this, the cage1cage2 mutants exhibit reduced levels of ß-Yariv binding to arabinogalactan protein linked ß-1,3-galactan. This leads us to hypothesize that defects in arabinogalactan biosynthesis underlie the cellulose deficiency of the mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Plântula/genética , Plântula/metabolismo
2.
Ann Bot ; 127(6): 709-713, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33723574

RESUMO

BACKGROUND: Extensins are plant cell wall hydroxyproline-rich glycoproteins known to be involved in cell wall reinforcement in higher plants, and in defence against pathogen attacks. The ability of extensins to form intra- and intermolecular cross-links is directly related to their role in cell wall reinforcement. Formation of such cross-links requires appropriate glycosylation and structural conformation of the glycoprotein. SCOPE: Although the role of cell wall components in plant defence has drawn increasing interest over recent years, relatively little focus has been dedicated to extensins. Nevertheless, new insights were recently provided regarding the structure and the role of extensins and their glycosylation in plant-microbe interactions, stimulating an interesting debate from fellow cell wall community experts. We have previously revealed a distinct distribution of extensin epitopes in Arabidopsis thaliana wild-type roots and in mutants impaired in extensin arabinosylation, in response to elicitation with flagellin 22. That study was recently debated in a Commentary by Tan and Mort (Tan L, Mort A. 2020. Extensins at the front line of plant defence. A commentary on: 'Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization'. Annals of Botany 125: vii-viii) and several points regarding our results were discussed. As a response, we herein clarify the points raised by Tan and Mort, and update the possible epitope structure recognized by the anti-extensin monoclonal antibodies. We also provide additional data showing differential distribution of LM1 extensin epitopes in roots between a mutant defective in PEROXIDASES 33 and 34 and the wild type, similarly to previous observations from the rra2 mutant defective in extensin arabinosylation. We propose these two peroxidases as potential candidates to specifically catalyse the cross-linking of extensins within the cell wall. CONCLUSIONS: Extensins play a major role within the cell wall to ensure root protection. The cross-linking of extensins, which requires correct glycosylation and specific peroxidases, is most likely to result in modulation of cell wall architecture that allows enhanced protection of root cells against invading pathogens. Study of the relationship between extensin glycosylation and their cross-linking is a very promising approach to further understand how the cell wall influences root immunity.


Assuntos
Arabidopsis , Parede Celular , Arabidopsis/genética , Peroxidases , Proteínas de Plantas
3.
Front Plant Sci ; 11: 611607, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381142

RESUMO

Plant cell wall associated hydroxyproline-rich glycoproteins (HRGPs) are involved in several aspects of plant growth and development, including wood formation in trees. HRGPs such as arabinogalactan-proteins (AGPs), extensins (EXTs), and proline rich proteins (PRPs) are important for the development and architecture of plant cell walls. Analysis of publicly available gene expression data revealed that many HRGP encoding genes show tight spatio-temporal expression patterns in the developing wood of Populus that are indicative of specific functions during wood formation. Similar results were obtained for the expression of glycosyl transferases putatively involved in HRGP glycosylation. In situ immunolabelling of transverse wood sections using AGP and EXT antibodies revealed the cell type specificity of different epitopes. In mature wood AGP epitopes were located in xylem ray cell walls, whereas EXT epitopes were specifically observed between neighboring xylem vessels, and on the ray cell side of the vessel walls, likely in association with pits. Molecular mass and glycan analysis of AGPs and EXTs in phloem/cambium, developing xylem, and mature xylem revealed clear differences in glycan structures and size between the tissues. Separation of AGPs by agarose gel electrophoresis and staining with ß-D-glucosyl Yariv confirmed the presence of different AGP populations in phloem/cambium and xylem. These results reveal the diverse changes in HRGP-related processes that occur during wood formation at the gene expression and HRGP glycan biosynthesis levels, and relate HRGPs and glycosylation processes to the developmental processes of wood formation.

4.
Methods Mol Biol ; 2149: 383-402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617947

RESUMO

Arabinogalactan proteins (AGPs) are important plant proteoglycans involved in many development processes. In roots, AGPs occur in the cell wall of root cells and root cap-derived cells as well as in the secreted mucilage. Detection, localization , and quantification techniques are therefore essential to unravel the AGP diversity of structures and functions. This chapter details root-adapted immunocytochemical methods using monoclonal antibodies, and a collection of biochemical analysis protocols using ß-D-glucosyl Yariv reagent for comprehensive AGP characterization.


Assuntos
Cromatografia em Gel/métodos , Eletroforese/métodos , Imuno-Histoquímica/métodos , Mucoproteínas/análise , Arabidopsis/química , Parede Celular/química , Glucosídeos/química , Mucoproteínas/química , Pisum sativum/química , Floroglucinol/análogos & derivados , Floroglucinol/química , Mucilagem Vegetal/análise , Mucilagem Vegetal/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Raízes de Plantas/química
5.
Ann Bot ; 125(5): 751-763, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242281

RESUMO

BACKGROUND AND AIMS: Extensins are hydroxyproline-rich glycoproteins thought to strengthen the plant cell wall, one of the first barriers against pathogens, through intra- and intermolecular cross-links. The glycan moiety of extensins is believed to confer the correct structural conformation to the glycoprotein, leading to self-assembly within the cell wall that helps limit microbial adherence and invasion. However, this role is not clearly established. METHODS: We used Arabidopsis thaliana mutants impaired in extensin arabinosylation to investigate the role of extensin arabinosylation in root-microbe interactions. Mutant and wild-type roots were stimulated to elicit an immune response with flagellin 22 and immunolabelled with a set of anti-extensin antibodies. Roots were also inoculated with a soilborne oomycete, Phytophthora parasitica, to assess the effect of extensin arabinosylation on root colonization. KEY RESULTS: A differential distribution of extensin epitopes was observed in wild-type plants in response to elicitation. Elicitation also triggers altered epitope expression in mutant roots compared with wild-type and non-elicited roots. Inoculation with the pathogen P. parasitica resulted in enhanced root colonization for two mutants, specifically xeg113 and rra2. CONCLUSIONS: We provide evidence for a link between extensin arabinosylation and root defence, and propose a model to explain the importance of glycosylation in limiting invasion of root cells by pathogenic oomycetes.


Assuntos
Arabidopsis , Oomicetos , Parede Celular , Glicoproteínas , Proteínas de Plantas
6.
J Exp Bot ; 69(18): 4235-4247, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29945246

RESUMO

Extensins are cell wall glycoproteins, belonging to the hydroxyproline-rich glycoprotein (HRGP) family, which are involved in many biological functions, including plant growth and defence. Several reviews have described the involvement of HRGPs in plant immunity but little focus has been given specifically to cell wall extensins. Yet, a large set of recently published data indicates that extensins play an important role in plant protection, especially in root-microbe interactions. Here, we summarise the current knowledge on this topic and discuss the importance of extensins in root defence. We first provide an overview of the distribution of extensin epitopes recognised by different monoclonal antibodies among plants and discuss the relevance of some of these epitopes as markers of the root defence response. We also highlight the implication of extensins in different types of plant interactions elicited by either pathogenic or beneficial micro-organisms. We then present and discuss the specific importance of extensins in root secretions, as these glycoproteins are not only found in the cell walls but are also released into the root mucilage. Finally, we propose a model to illustrate the impact of cell wall extensin on root secretions.


Assuntos
Parede Celular/metabolismo , Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...